Main Article Content

Abstract

Penelitian ini bertujuan untuk menghasilkan simulasi pembentukan bayangan pada cermin cembung sebagai media pembelajaran Fisika yang digunakan secara mudah dan efektif. Penelitian ini bersifat studi literatur, dengan menggunakan metode komparatif antara hasil simulasi dan hasil analitik. Simulasi dalam penelitian ini dibuat menggunakan aplikasi Visual Basic for Application Microsoft Powerpoint, dengan memanfaatkan konsep Fisika dan Matematika, dimana cermin cembung disimulasikan menggunakan persamaan parametrik untuk lingkaran, sedangkan sinar-sinar istimewa disimulasikan menggunakan persamaan garis lurus dengan gradien tertentu. Hasil yang diperoleh dalam simulasi ini sama dengan hasil analitik yang menggunakan media Nomograf Optik. Proses pembentukan bayangan pada cermin cembung lebih mudah untuk digambarkan apabila cermin tersebut dianggap sebagai sebuah permukaan datar. Dengan demikian, simulasi ini dapat digunakan dalam proses pembelajaran Fisika. Perbandingan hasil analitik perhitungan jarak bayangan antara media simulasi menggunakan Visual Basic for Application (VBA) pada powerpoint dengan Nomograf Optik tidak jauh berbeda berarti dapat digunakan secara bersama dalam pembelajaran.

Keywords

Simulasi VBA Powerpoint Nomograf Optik

Article Details

Author Biography

Putut Marwoto, Universitas Negeri Semarang

Prodi Pendidikan Fisika, FMIPA

How to Cite
Iskandar, H., & Marwoto, P. (2020). Integrasi Simulasi Pembentukan Bayangan pada Cermin Cembung menggunakan Visual Basic For Application Powerpoint dengan Nomograf Optik. PSEJ (Pancasakti Science Education Journal), 5(1), 17-27. https://doi.org/10.24905/psej.v5i1.29

References

  1. Astra, IM, Nasbey, H., & Nugraha, A., (2015). Development of an Android Application in the Form of a Simulation Lab as Learning Media for Senior High School Students. Eurasia Journal of Mathematics, Science & Technology Education. 11 (5), 1081-1088.
  2. Aydin, S., Keleş, PU, & Haşiloğlu, MA (2012). Establishment for Misconceptions that Science Teacher Candidates have about Geometric Optics. International Journal of New Horizon in Education, 2 (3): 7-15.
  3. Belova, N. & Eilks, I. 2015. German Teachers' Views on Promoting Scientific Media Literacy Using Advertising in the Science Classroom. International Journal of Springer Science and Education. 42 (1): 51–74.
  4. Calimag, JV, Miguel, PAG, Conde, RS, & Aquino, LB (2014). Ubiquitous Learning Environment Using Android Mobile Application. International Journal of Research in Engineering & Technology. 2: 119-128.
  5. Chang, HP, Hsu, YS, Wu, HK, & Tsai, CC (2018). Students' development of socio-scientific reasoning in a mobile augmented reality learning environment. International Journal of Science Education. 102 (5), 1129-1149.
  6. Chang, HP, Chen, JY, Guo, CJ, Chen, CC, Chang, CY, Lin, SH, Su, WJ, Other, KD, Hsu, SY, Lin, JL, Chen, CC, Cheng, YT , Wang, LS, & Tseng, YT (2015). Primary and Secondary Investigating Students' Learning of Physics Concepts in Taiwan. International Journal of Science Education. 29 (4): 465-482.
  7. Chu, H., E & DF Treagust. (2014). Secondary Students' Stable and Unstable Optics Conceptions Using Contextualized Question. Journal of Sci Edu Technol, 23: 238-251.
  8. Christian W and Esquembre F. Modeling Physics with Easy Java Simulations. The Physics Teacher. 2017; 45 (8): 475-480.
  9. David M. Marcovitz, "Powerful PowerPoint for Educators Using Visual Basic for Applications to Make PowerPoint Interactive", Santa Barbara - California, Second Edition, 2012, p. 34-35.
  10. Daniel C. Alexander, Geralyn M. Koeberlein, "Elementary Geometry for College Students", Cengage Learning, 2014, p. 345-348.
  11. Falloon, G., (2017). Mobile Devices and Apps as Scaffolds to Science Learning in the Primary Classroom. International Journal of Educational Science Technology. 26: 613–628.
  12. Frey, BA & Sutton, JM 2010. a Model for Developing Multimedia Learning Projects, MERLOT. Journal of Online Learning and Teaching. 6 (2), 491 - 507.
  13. Galili, I. (2014). Students' conceptual change in geometrical optics. International Journal of Science Education. 18 (7): 847-868.
  14. Hansson, L., Hansson, O., Juter, K., Redfors, A. (2015). Reality - Theoretical Models - Mathematics: a Ternary Perspective on Physics Lessons in Upper-Secondary School. International Journal of Springer Science and Education. 24: 615–644.
  15. Harwood, Adrian RG, Alistair J. Revell. (2016). Parallelisation of an interactive lattice-Boltzmann method on an Android-powered mobile device. International Journal of Advances in Engineering Software. 104 (2017) 38–50.
  16. Iskandar, H. 2016. Validation of Optical Nomographs as a Medium for Calculating the Physical Quantities of Mirrors and Lenses. Journal of Innovative Science Education 5 (2): 121–127.
  17. Jagust, T., & Botički, I., (2019). Mobile learning system for enabling collaborative and adaptive pedagogies with modular digital learning contents. International Journal of Cumputer Education. 3: 335-362.
  18. Kattayat S, Josey S, and Asha JV. The Relationship between Simulation Assisted Instruction and Attitude towards Physics of Adolescent Students. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS). 2016; 22 (1): 32-38.
  19. Kaltakci-Gurel D, Eryilmaz A, and McDermott LC. Identifying Pre-Service Physics Teachers' Misconceptions and Conceptual Difficulties about Geometrical Optics. European Journal of Physics. 2016; 37 (4): 045705.
  20. Kroothkaew S and Srisawasdi N. Teaching How Light Can Be Refracted Using Simulation-Based Inquiry with A Dual Situated Learning Model. Procedia-Social and Behavioral Sciences. 2013; 93: 2023-2027.
  21. Liu CY, Wu CJ, Wong WK, Lien YW, and Chao TK. Scientific Modeling with Mobile Devices in High School Physics Labs. Computers & Education. 2017; 105: 44-56.
  22. Neves RG, Silva JC, and Teodoro VD. Improving Learning in Science and Mathematics with Exploratory and Interactive Computational Modeling. In Trends in Teaching and Learning of Mathematical Modeling. Springer: Dordrecht; 2011.
  23. Obiria, PB, & Kimwele, MW, (2017). A location-based privacy-preserving m-learning model to enhance distance education in Kenya. International Journal of Computer Education. 4: 147–169.
  24. Parsazadeh, N., Ali, R., Rezaei, M., Tehrani, RZ, (2018). The construction and validation of a usability evaluation survey for mobile learning environments. International Journal Studies in Educational Evaluation, 58: 97-111.
  25. Rivera-Ortega U and Dirckx J. Visualizing The Phenomena of Wave Interference, Phase Shifting and Polarization by Interactive Computer Simulations. European Journal of Physics. 2015; 36(5): 055016.
  26. Sahin S. Computer Simulations in Science Education: Implications for Distance Education. Turkish Online Journal of Distance Education. 2006; 7(4): 1-13.
  27. Saleh S. Malaysian Students' Motivation Towards Physics Learning. European Journal of Science and Mathematics Education. 2014; 2(4): 223-232.
  28. Serway RA and Jewett JW, "Physics for Scientists and Engineers", James Madison University-California State Polytechnic University, 2012, p. 1094-1150.
  29. Sun, JCY, Chang, KY, & Chen, YH, (2015). GPS sensor-based mobile learning for English: an exploratory study on self-efficacy, self-regulation and student
  30. achievement. Research and Practice in Techology Enhanced Learning. 10: 23
  31. Taub R, Armoni M, Ben-Ari MM. The Effect of Computer Science and Active Simulation Design on Physics Learning. Proceedings of the 9th Chais Conference for the Study of Innovation and Learning Technologies: Learning in the Technological Era. The Open University of Israel. 2014; 94-99.
  32. Tekos, G. & Solomonidou, C. 2012. Constructivist Learning and Teaching of Optics. Concepts Using ICT Tools in Greek Primary School: a Pilot Study. International Journal of Educational Science Technology. 18: 415–428.
  33. Tipler, P A. Physics for Science and Engineering, Volume 2. Jakarta: Erlangga; 2001