Main Article Content

Abstract

Optika geometri merupakah salah satu disiplin ilmu yang mempelajari perambatan sinar. Penelitian bertujuan untuk mengetahui kesalahan mahasiswa dalam melakukan representasi visual pada penyelesaian soal optika geometri. Metode penelitian menggunakan ex post facto. Subjek penelitian mahasiswa tadris biologi berjumlah 146 yang telah mendapatkan materi optika geometri pada tingkat sekolah menengah atas. Instrumen soal representasi visual terdiri dari 8 soal tes kinerja. Hasil penelitian menunjukkan kesalahan representasi visual yang dilakukan mahasiswa disebabkan oleh 1) mahasiswa tidak memahami konsep pembiasan dan pemantulan sinar pada lensa, 2) mahasiswa tidak menguasai konsep tentang sinar istimewa pada diagram pembentukan bayangan lensa dan alat optik, 3) mahasiswa tidak memahami hukum snellius dalam memecahkan persoalan pemantulan sempurna, perambatan sinar dari medium yang lebih rapat ke medium yang kurang rapat, perambatan sinar dari medium kurang rapat ke medium lebih rapat 4) mahasiswa tidak membedakan simbol dalam melakukan representasi visual.


 

Keywords

Representasi Visual Optika Geometri Hukum Snellius

Article Details

How to Cite
Ubaidillah, M. (2019). Analisis Kesalahan Mahasiswa dalam Menyelesaikan Soal Representasi Visual pada Materi Optika Geometri. PSEJ (Pancasakti Science Education Journal), 4(1), 55-63. https://doi.org/10.24905/psej.v4i1.50

References

  1. Abdurrahman, Liliasari, Rusli, A & Waldrip B. (2011). Implementasi Pembelajaran Berbasis Multiple Representasi Untuk Peningkatan Penguasaan Konsep Fisika Kuantum. Cakrawala Pendidikan, 30(1), 30-45.
  2. Ainsworth, S. (1999). The Function of Multiple Representation. Computers and Education, 33, 131-152.
  3. Ametller, J., & Pinto, R. (2002). Students‘reading of innovative images of energy at secondary school level. International Journal of Science Education, 24 (3), 285312.
  4. Botzer, G., & Reiner, M. (2005). Imagery in physics learning – From physicists’ practice to naive students’ understanding. In J. K. Gilbert (Ed.),
  5. Visualization in science education (pp. 147–168). Dordrecht: Springer.
  6. Chittleborough, G., & Treagust, D. (2008). The correct interpretation of chemical diagrams requires transforming from one level of representation to another.
  7. Research in Science Education, 38(4), 463–482.
  8. Chu, H.E., & Treagust, D. F. (2014). Secondary Students’ Stable and Unstable Optics Conceptions Using Contextualised Questions. Journal of
  9. Science Education and Technology, 23, 238–251. DOI: 10.1007/s10956-013-9472-6.
  10. Ericsson, K. A., & Smith, J. (1991). Toward a general theory of expertise. Cambridge, MA: Cambridge University Press.
  11. Fetherstonhaugh, T., & Treagust, D. F. (1992). Students’ understanding of light and its properties: Teaching to engender conceptual change. Science Education, 76(6), 653–672.
  12. Galili, I. (1996) Students’ conceptual Change in Geometrical Optics. International Journal of Science Education, 18(7), 847868, DOI:10.1080/0950069960180709.
  13. Galili, I., Bendall, S., & Goldberg, F. (2006). The effects of prior knowledge and instruction on understanding image formation. Journal of Research in Science Teaching, 30(3), 271–301.
  14. Giancoli, D.C. (2014). Physics for Scientists & Engineers With Modern Physics. New Jersey: Pearson Prentice Hall.
  15. Gil-Garcia, A. & Villegas, J. (2003). Engaging minds, enhancing comprehension and constructing knowledge through visual representations. Paper presented at the Conference.
  16. Goldin, G.A. (2002). Representation in Mathematical Learning and Problem Solving. Dalam L.D. English (Ed). Handbook of International Research in Mathematical Education (IRME). New Jersey: Lawrence Erlbaum Associates.
  17. Gunel, M., Hand, B., & Gunduz, S. (2006). Comparing Student Under-standing of Quantum Physics When Embedding Multimodal Representations into Two
  18. Different Writing Formats: Presentation Format Versus Summary Report Format. www.interscience.wile-y.com. Diunduh 15 Oktober 2007. on Word Association for Case Method Research and Application, Bordeaux, France.
  19. Handhika, J., Cari, Soeparmi, dan Sunarno, W. (2015a). “Student Conception and Perception of Newton’s Law.” Proceedings of International Seminar on
  20. Mathematics, Science, and Computer Science Education (MSCEIS 2015): 070005
  21. Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40(1), 5–28.
  22. LaDue, N., D. Libarkin, Julie C. Thomas, & Stephen R. (2015). Visual representations on high school biology, chemistry, earth science, and physics assessments. Journal of Science Education and Technology, 24(6): 818-834. DOI:10.1007/s10956-015-9566-4.
  23. Kerlinger, F., N. (2003) Asas-asas penelitian behavioral. Terj. Landung R. Simatupang, Editor H.J. Koesoemanto. Yogyakarta: Gajah Mada University Press
  24. Knorr-Cetina, K. D., & Amann, K. (1990). Image dissection in natural scientific inquiry. Science, Technology, and Human Values, 15, 259– 283. DOI:10.1177/016224399001500301
  25. Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of repre- sentations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the Learning Sciences, 9, 105–143. DOI:10.1207/s15327809jls0902_1
  26. Lynch, M. (1995). Laboratory space and the technological complex: An investigation of topical contextures. In S. L. Star (Ed.), Ecologies of knowledge: Work and politics in science and technology (pp. 226–256). Albany, NY: State University of New York Press.
  27. Lynch, M., & Woolgar, S. (Eds.). (1990). Representation in scientific practice. Cambridge, MA: MIT Press.
  28. Murtono, Setiawan, A., & Rusdiana, D. (2004). Fungsi Representasi dalam Mengakses Penguasaan Konsep Fisika Mahasiswa. Jurnal Riset Dan Kependidikan Fisika, 1(2), 80–84.
  29. Mzoughi, T., Herring, S. D., Foley, J. T., Morris, M. J., & Gilbert, P. J. (2007). WebTOP: A 3D interactive system for teaching and learning optics. Computers
  30. & Education, 49(1), 110–129.
  31. Patrick, M. D., Carter, G., & Wiebe, E. N. (2005). Visual representations of DNA replication: Middle grades students‘ perceptions and interpretations. Journal
  32. of Science Education And Technology, 14, 353–365.
  33. Plötzner, R., & Spada, H. (1998). Inhalt, Struktur und Anwendung von Physikwissen: Eine psy- chologische Perspektive [Content, structure and application of physics knowledge: A psycho- logical perspective]. Zeitschrift für Didaktik der Naturwissenschaften, 4(2), 81–100.
  34. Ronen, M., Eylon, B.-S., Rivlin, O., & Ganiel, U. (1993). Designing and using an open graphic interface for instruction in geometrical optics. Computers & Education, 20(4), 299–309. Rosengrant, D., Etkina, E., & Van Heuvelen, A. (2007). An overview of recent research on multiple representations. Physics Education Research Conference, 883, 149–152.
  35. Roth, W., Bowen, J. M., & McGinn, M. K. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals.
  36. Journal of Research in Science Teaching, 36, 977– 1019. DOI:10.1002/(SICI)10982736(199911)36:9?977::AID-TEA3?3.0.CO;2-V.
  37. Schank, R. C. (1994). Goal-based scenarios: A radical look at education. Journal of the Learning Sciences, 3, 429–453. DOI:10.1207/ s15327809jls0304_5.
  38. Setyani, N. D., Handhika, J., & Cari. (2016). Analisis Kesalahan Mahasiswa Dalam Menyelesaikan Soal Multirepresentasi Pada Materi Kinematika Dan Dinamika.
  39. Prosiding Makalah Seminar Nasional Pendidikan Fisika II 2016, Madiun, 28 Mei 2016, 121–127.
  40. Shapiro, B. (1994). What children bring to light: A constructivist perspective on children’s learning in science. New York: Teachers College Press.
  41. Sugiyono. (2009). Metode Penelitian Kunatitatif Kualitatif dan R & D. Bandung: Alfabeta.
  42. Tsui, C.-Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In D. F. Treagust
  43. & C.-Y. Tsui (Eds.), Multiple representations in biological education (pp. 3–18). Dordrecht: Springer.
  44. Waldrip, B., Prain, V., & Carolan, J. (2010). Using Multi-Modal Representations to Improve Learning in Junior Secondary Science. Res. Science Education, 40, 65-80.
  45. Wospakrik, H. J. & Hendrajaya, L. (1993). Dasar-dasar Matematika untuk Fisika. Jakarta : Ditjen Dikti Depdikbud RI Proyek Pembinaan Tenaga Kependidikan Pendidikan Tinggi.